
Binary data structures (un-)Packing
library

Release 1.2.0.dev1

Antonio Valentino

Dec 28, 2023

CONTENTS

1 Overview 3
1.1 What is bpack? . 3
1.2 Features . 3
1.3 Limitations . 4
1.4 Possible additional features still not implemented 5

2 Installation 7
2.1 Pip . 7
2.2 Conda . 7
2.3 Testing . 7

3 User Guide 9
3.1 Core concepts . 9
3.2 Binary data structures declaration . 11
3.3 Fields specification . 13
3.4 Enumeration fields . 18
3.5 Sequence fields . 20
3.6 Record nesting . 21
3.7 Special type annotations . 21
3.8 Data codecs . 23

4 bpack package 25
4.1 bpack.ba module . 25
4.2 bpack.bs module . 26
4.3 bpack.codecs module . 27
4.4 bpack.descriptors module . 28
4.5 bpack.enums module . 32
4.6 bpack.np module . 33
4.7 bpack.st module . 36
4.8 bpack.typing module . 37
4.9 bpack.utils module . 38

5 Developers Guide 41

i

5.1 Project links . 41
5.2 Set-up the development environment . 41
5.3 Testing the code . 42
5.4 Test coverage . 42
5.5 Check code style and formatting . 43
5.6 Build the documentation . 43
5.7 Test code snippets in the documentation . 43
5.8 Check documentation links . 43
5.9 Check documentation spelling . 44
5.10 Update the API documentation . 44

6 Copyright and License 45
6.1 Integral license text . 45

7 Release Notes 51
7.1 bpack v1.2.0 (UNRELEASED) . 51
7.2 bpack v1.1.0 (15/04/2023) . 51
7.3 bpack v1.0.0 (05/02/2023) . 52
7.4 bpack v0.8.2 (20/03/2022) . 52
7.5 bpack v0.8.1 (30/11/2021) . 52
7.6 bpack v0.8.0 (03/06/2021) . 52
7.7 bpack v0.7.1 (08/03/2021) . 52
7.8 bpack v0.7.0 (21/01/2021) . 53
7.9 bpack v0.6.0 (15/01/2021) . 53
7.10 bpack v0.5.0 (31/12/2020) . 54

Index 55

ii

Binary data structures (un-)Packing library, Release 1.2.0.dev1

HomePage
https://github.com/avalentino/bpack

Author
Antonio Valentino

Contact
antonio.valentino@tiscali.it

Copyright
2020-2023, Antonio Valentino <antonio.valentino@tiscali.it>

Version
1.2.0.dev1

CONTENTS 1

https://github.com/avalentino/bpack
mailto:antonio.valentino@tiscali.it
mailto:antonio.valentino@tiscali.it

Binary data structures (un-)Packing library, Release 1.2.0.dev1

2 CONTENTS

CHAPTER

ONE

OVERVIEW

1.1 What is bpack?

The bpack Python package provides tools to describe and encode/decode binary data.

Binary data are assumed to be organized in records, each composed by a sequence of fields. Fields
are characterized by a known size, offset (w.r.t. the beginning of the record) and datatype.

The package provides classes and functions that can be used to:

• describe binary data structures in a declarative way (structures can be specified up to the bit
level)

• automatically generate encoders/decoders for a specified data descriptor

Encoders/decoders (backends) rely on well known Python packages like:

• struct (form the standard library)

• bitstruct (optional)

• numpy (optional)

• bitarray (optional) - partial implementation

1.2 Features

• declarative description of binary data structures

• specification of data structures up to bit level

• automatic codec generation from data descriptors

• decoding (from binary data to Python objects)

• encoding (from Python objects to binary data)

• backend:

3

https://docs.python.org/3/library/struct.html#module-struct
https://github.com/eerimoq/bitstruct
https://numpy.org
https://github.com/ilanschnell/bitarray

Binary data structures (un-)Packing library, Release 1.2.0.dev1

– bpack.st backend based on the struct module of standard Python library

– bpack.bs backend based on bitstruct

– bpack.np backend based on numpy

– bpack.ba backend based on bitarray (only included for benchmarking purposes)

• support for signed/unsigned integer types

• support for enum.Enum types

• support for sequence types, i.e. fields with multiple (homogeneous) items

• both bit and byte order can be specified by the user

• automatic size determination for some data types

• record nesting (the field in a record descriptor can be another record)

• possibility to specify data types using the special type annotation class bpack.typing.T
that accepts annotations and string specifiers compatible with the numpy “Array Interface”
and dtype

• comprehensive test suite

1.3 Limitations

• only fixed size binary records are supported by design, the size of the record shall be known
at the moment of the record descriptor definition. It should be easy for the user to leverage
tools provided by the bpack Python package to support more complex decoding scenarios.

• currently it is assumed that all fields in a binary record share the same bit/byte order. The
management of different byte order in the same binary record is, in principle, possible but
not planned at the moment.

• sequence types can only contain basic numeric types; nested sequences, sequences of enums
or sequences of records are not allowed at the moment.

• record nesting is only possible for records having the same base-units, bits or bytes, and
compatible decoder types eventually.

• currently the bpack.np has a limited (incomplete) support to record nesting and encoding
capabilities.

4 Chapter 1. Overview

https://docs.python.org/3/library/struct.html#module-struct
https://www.python.org
https://github.com/eerimoq/bitstruct
https://numpy.org
https://github.com/ilanschnell/bitarray
https://docs.python.org/3/library/enum.html#enum.Enum
https://numpy.org

Binary data structures (un-)Packing library, Release 1.2.0.dev1

1.4 Possible additional features still not implemented

• user defined converters

• support for complex and datetime data types

• conversion to CSV, HDF5 and numpy.dtype()

1.4. Possible additional features still not implemented 5

Binary data structures (un-)Packing library, Release 1.2.0.dev1

6 Chapter 1. Overview

CHAPTER

TWO

INSTALLATION

2.1 Pip

Basic installation:

$ python3 -m pip install bpack

Recommended:

$ python3 -m pip install bpack[bs,np]

to install also dependencies necessary to use the bpack.bs backend and (for binary structures
defined up to the bit level).

2.2 Conda

$ conda install -c conda-forge -c avalentino bpack

2.3 Testing

To run the test suite it is necessary to have pytest installed:

$ python3 -m pytest --pyargs bpack

This only tests codec backends for which the necessary dependencies are available. To run a com-
plete test please make sure to install all optional dependencies and testing libraries:

$ python3 -m pip install bpack[test]

7

https://docs.pytest.org

Binary data structures (un-)Packing library, Release 1.2.0.dev1

8 Chapter 2. Installation

CHAPTER

THREE

USER GUIDE

3.1 Core concepts

bpack is a lightweight Python package intended to help users to

• describe binary data structures

• encode/decode binary data to/from Python object

3.1.1 Descriptors

The user can define binary data structure in a declarative way, as follows:

import bpack

@bpack.descriptor
class BinaryRecord:

field_1: float = bpack.field(size=8)
field_2: int = bpack.field(size=4, signed=True)

Key concepts for definition of binary data structures are

• the declaration of the data structure by means of the bpack.descriptors.descriptor()
class decorator. It allows to specify the main properties of the data structure.

• the specification of the characteristics of each field, mainly the data type, the size and (op-
tionally) the offset with respect to the beginning of the record. This can be done using the
bpack.descriptors.field() factory function.

In the above example the BinaryRecord has been defined to have two fields:

field_1
a double precision floating point (8 bytes)

field_2
a 32bit signed integer (4 bytes)

9

Binary data structures (un-)Packing library, Release 1.2.0.dev1

size is expressed in bytes in this case.

The offset of the fields have not been explicitly specified so they are computed automatically.

In the example field_1 has offset=0, while field_2 has offset=8 i.e. data belonging to
field_2 immediately follow the ones of the previous field.

The design is strongly inspired to the one of the dataclasses package of the Python standard
library.

3.1.2 Codecs

Once a binary structure is defined, the bpack package allows to automatically generate Codec ob-
jects that are able to convert binary data into a Python objects and vice versa:

import bpack.st

binary_data = b"\x18-DT\xfb!\t@\x15\xcd[\x07"

codec = bpack.st.Codec(BinaryRecord)
record = codec.decode(binary_data)

assert record.field_1 == 3.141592653589793
assert record.field_2 == 123456789

print(record)

BinaryRecord(field_1=3.141592653589793, field_2=123456789)

encoded_data = codec.encode(record)
assert binary_data == encoded_data

print("binary_data: ", binary_data)
print("encoded_data:", encoded_data)

binary_data: b'\x18-DT\xfb!\t@\x15\xcd[\x07'
encoded_data: b'\x18-DT\xfb!\t@\x15\xcd[\x07'

In the example above it has been used the bpack.st.Codec class from the bpack.st module.

Please note that the decoder class (bpack.st.Codec)

• takes in input the descriptor (i.e. the type) of the binary data structure, and

• return a codec object which is capable to encode/decode only binary data organized according
to the descriptor received at the instantiation time. If one need to encode/decode a differed

10 Chapter 3. User Guide

https://docs.python.org/3/library/dataclasses.html#module-dataclasses

Binary data structures (un-)Packing library, Release 1.2.0.dev1

data structure than it is necessary to instantiate a different codec.

The bpack.stmodule used in the example is just one of the, so called, backends available in bpack.

See the Backends section below for more details.

3.2 Binary data structures declaration

As anticipated above the declaration of a binary data structure and its main properties is done using
the bpack.descriptors.descriptor() class decorator.

3.2.1 Bit vs byte structures

One of the properties that the bpack.descriptors.descriptor() class decorator allows to
specify is baseunits. It allows to specify the elementary units used to describe the binary struc-
ture itself. A structure can be described in terms of bytes or in terms of bits, i.e. if field size and
offsets have to be intended as number of bytes of as number of bits.

This is an important distinction for two reasons:

• it is fundamental for decoders (see below) to know much data have to be converted and where
this data are exactly located in a string of bytes

• not all backends are capable of decoding both kinds of structures

Note: Currently available backends do not support nested data structures (see Record nesting)
described using different baseunits (see Limitations).

Baseunits can be specified as follows:

@bpack.descriptor(baseunits=bpack.EBaseUnits.BITS)
class BitRecord:

field_1: bool = bpack.field(size=1)
field_2: int = bpack.field(size=3)
field_3: int = bpack.field(size=4)

The baseunits parameter has been specified as a parameter of the bpack.descriptors.
descriptor() class decorator and its possible values are enumerated by the bpack.enums.
EBaseUnits enum.Enum:

• bpack.enums.EBaseUnits.BITS, or

• bpack.enums.EBaseUnits.BYTES

3.2. Binary data structures declaration 11

https://docs.python.org/3/library/enum.html#enum.Enum

Binary data structures (un-)Packing library, Release 1.2.0.dev1

If the baseunits parameter is not specified than it is assumed to be equal to bpack.enums.
EBaseUnits.BYTES by default.

Please note that the entire data structure of the above example is only 8 bits (1 byte) large.

Note: Please note that baseunits and many of the function and method parameters whose valued
is supposed to be an enum.Enum can also accept a string value. E.g. the above example can also be
written as follows:

@bpack.descriptor(baseunits="bits")
class BitRecord:

field_1: bool = bpack.field(size=1)
field_2: int = bpack.field(size=3)
field_3: int = bpack.field(size=4)

Please refer to the specific enum documentation (in this case bpack.enums.EBaseUnits) to know
which are string values corresponding to the desired enumerated value.

3.2.2 Specifying bit/byte order

Other important parameters for the bpack.descriptors.descriptor() class decorator are:

byteorder
whose possible values are described by bpack.enums.EByteOrder. By the fault
the native byte order is assumed.

bitorder
whose possible values are described by bpack.enums.EBitOrder. The bitorder
parameter shall always be set to None the if baseunits value is bpack.enums.
EBaseUnits.BYTES.

Both this parameters describe the internal organization of binary data of each field.

3.2.3 Descriptor size

The bpack.descriptors.descriptor() class decorator also allows to specify explicitly the
overall size of the binary data structure:

@bpack.descriptor(baseunits="bits", size=8)
class BinaryRecord:

field_1: bool = bpack.field(size=1)
field_2: int = bpack.field(size=3)

In this case the the overall size of BitRecord is 8 bits (1 bytes)

12 Chapter 3. User Guide

https://docs.python.org/3/library/enum.html#enum.Enum

Binary data structures (un-)Packing library, Release 1.2.0.dev1

>>> bpack.calcsize(BinaryRecord)
8

even if the sum of sizes of all fields is only 4 bits.

Usually explicitly specifying the size of a binary data structure is not necessary because the bpack
is able to compute it automatically by looking at the size of fields.

In some cases, anyway, it can be useful to specify it, e.g. when one want to use a descriptor like the
one defined in the above example as field of a larger descriptor (see Record nesting). In this case
it is important tho know the correct size of each field in order to be able to automatically compute
the offset of the following ones.

3.3 Fields specification

As anticipated in the previous section there are three main elements that the bpack package need to
know about fields in order to have a complete description of a binary data structure:

• the field data type,

• the field size (expressed in baseunits, see Bit vs byte structures), and

• the field offset with respect to the beginning of the binary data structure (also in this case
expressed in baseunits, see Bit vs byte structures)

@bpack.descriptor
class BinaryRecord:

field: int = bpack.field(size=4, offset=0)

Please note, anyway, that in some case it is possible to infer some of the above information from the
context so it is not always necessary to specify all of them explicitly. More details will be provided
in the following.

As shown in the example above the main way to specify a field descriptor is to use the bpack.
descriptors.field() factory function together with Python type annotations to specify the data
type.

3.3. Fields specification 13

Binary data structures (un-)Packing library, Release 1.2.0.dev1

3.3.1 Type

The data type of a field is the only parameter that is always mandatory, and also it is the only
parameter that is not specified by means of the bpack.descriptors.field() factory function.
Rather it is specified using the standard Python syntax for type annotations.

Currently supported data types are:

basic types
basic Python types like bool, int, float, bytes, str (complex is not supported
currently)

enums
enumeration types defined using the enum module of the standard Python library.
Please refer to the Enumeration fields section for more details about features and
limitations

sequences
used to define fields containing a sequence of homogeneous values (i.e. values
having the same data type). A sequence data type in bpack can be defined using
the standard type annotations classes like typing.Sequence or typing.List.
Please refer to the Sequence fields section for more details about features and
limitations

descriptors
i.e. any binary data structure defined using the bpack.descriptors.
descriptor() class decorator (see also Record nesting)

type annotations
annotated data types defined by means of the bpack.typing.T type annotation.
Please refer to the Special type annotations section for a more detailed description

Note: The str type in Python is used to represent unicode strings. The conversion of this kind of
strings from/to binary format requires some form of decoding/encoding. Bpack codecs (see Data
codecs) convert str data from/to bytes strings using the “UTF-8” encoding.

Please note that the size of a str field still describes the number of bits/bytes in its binary represen-
tation, not the length of the string (which in principle could require a number of bytes larger that
the number of characters).

14 Chapter 3. User Guide

https://docs.python.org/3/library/enum.html#module-enum
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.List

Binary data structures (un-)Packing library, Release 1.2.0.dev1

3.3.2 Size

The field size is specified as a positive integer in baseunits (see the Bit vs byte structures section).

It is a fundamental information and it must be always specified by means of the bpack.
descriptors.field() factory function unless it is absolutely clear and unambiguous how to
determine the fields size from the data type.

This is only possible in the following cases:

• the data type is bool in which case the size is assumed to be 1 (at the moment no other basic
type has a default size associated)

• the data type is a record descriptor, in which case the field size is computed as follows:

bpack.calcsize(BinaryRecord, units=bpack.baseunits(BinaryRecord))

• the data type is specified using special type annotations also including size information:

from bpack import T

@bpack.descriptor
class BinaryRecord:

field: T["u3"]

The T["u3"] type annotation specifier defines an unsigned integer type (u) having size 3 (for
the specific example this means 3 bytes). Please refer to the Special type annotations section
for more details.

Please note that the size of the field must not necessarily correspond to the size of one of the data
types supported by the platform. In the example above it has been specified a type T["u3"] which
corresponds to a 24 bits unsigned integer. It is represented using a standard Python int in the
Python code but the binary representation will always take only 3 bytes.

3.3.3 Offset

The field offset is specified as a not-negative integer in baseunits (see the Bit vs byte structures
section), and it represent the amount of baseunits from the beginning of the record to the beginning
of the field.

It is a fundamental information and it can be specified by means of the bpack.descriptors.
field() factory function.

The bpack package, anyway, implements a mechanism to automatically compute the field offset
exploiting information of the other fields in the record. For this reason it is necessary to specify the
field offset explicitly only in very specific cases.

For example the verbose definition of a record with 5 integer fields looks like the following:

3.3. Fields specification 15

Binary data structures (un-)Packing library, Release 1.2.0.dev1

@bpack.descriptor
class BinaryRecord:

field_1: int = bpack.field(size=4, offset=0)
field_2: int = bpack.field(size=4, offset=4)
field_3: int = bpack.field(size=4, offset=8)
field_4: int = bpack.field(size=4, offset=12)
field_5: int = bpack.field(size=4, offset=16)

If not specified, the offset of the first field is assumed to be 0, and the offset of the following fields
is assumed to be equal to the offset of the previous field plus the size of the previous field itself:

field[n].offset = field[n - 1].offset + field[n - 1].size

In short the automatic offset computation works assuming that all fields are stored contiguously and
without holes.

@bpack.descriptor
class BinaryRecord:

field_1: int = bpack.field(size=4) # offset = 0 first field
field_2: int = bpack.field(size=4) # offset = 4

field_1.offset + field_1.size
field_3: int = bpack.field(size=4) # offset = 8

field_2.offset + field_2.size
field_4: int = bpack.field(size=4) # offset = 12

field_3.offset + field_3.size
field_5: int = bpack.field(size=4) # offset = 16

field_4.offset + field_4.size

Now suppose that the user is not interested in the field n. 2 and wants to remove it from the descrip-
tor. This creates a gap in the binary data which makes not possible to exploit the automatic offset
computation mechanism:

@bpack.descriptor
class BinaryRecord:

field_1: int = bpack.field(size=4) # offset = 0 first field
field_2: int = bpack.field(size=4)
field_3: int = bpack.field(size=4) # offset = 4 != 8 NOT CORRECT
field_4: int = bpack.field(size=4) # offset = 8 != 12 NOT CORRECT
field_5: int = bpack.field(size=4) # offset = 12 != 16 NOT CORRECT

The automatic computation of the offset fails, in this case, because of the missing information
about field_2. Indeed, since field_2 has not been specified, for the computation of the off-
set of field_3 bpack assumes that the previous field is field_1 and performs the computation
accordingly:

16 Chapter 3. User Guide

Binary data structures (un-)Packing library, Release 1.2.0.dev1

field_3.offest = fielf_1.offset + field_i.size == 4 != 8 # INCORRECT

The incorrect offset of field_3 causes the incorrect computation of the offset all the fields that
follow.

One option to recover the correct behavior (without falling back to the verbose description shown
at the beginning of the section) is to specify explicitly only the offset of the first field after the gap:

@bpack.descriptor
class BinaryRecord:

field_1: int = bpack.field(size=4) # offset = 0 first field
field_2: int = bpack.field(size=4)
field_3: int = bpack.field(size=4, offset=8)
field_4: int = bpack.field(size=4) # offset = 12
field_5: int = bpack.field(size=4) # offset = 16

In this way the correct offset can be computed automatically for all fields but the one(s) immediately
following a gap in the data descriptor.

3.3.4 Signed integer types

Only for integer types, it is possible to specify if the integer value is signed or not. Although this
distinction is not relevant in the Python code, it is necessary to have this information when data
have to be stored in binary form.

@bpack.descriptor
class BinaryRecord:

field: int = bpack.field(size=4, offset=0, signed=True)

If signed is not specified for a field having an integer type, then it is assumed to be False (unsigned).

The signed parameter is ignored if the data type is not int.

3.3.5 Default values

The bpack.descriptors.field() factory function also allows to specify default values using
the default parameter:

@bpack.descriptor
class BinaryRecord:

field: int = bpack.field(size=4, default=0)

This allows to instantiate the record without specifying the value of each field:

3.3. Fields specification 17

Binary data structures (un-)Packing library, Release 1.2.0.dev1

>>> BinaryRecord()
BinaryRecord(field=0)

In cases in which the bpack.descriptors.field() factory function is not used for field defini-
tion, the default value can be specified by direct assignment:

@bpack.descriptor
class BinaryRecord:

field_1: bool = False
field_2: bpack.T["i4"] = 33

Note: No check is performed by bpack to ensure that the default value specified for a field is
consistent with the corresponding data type.

3.4 Enumeration fields

The bpack package supports direct mapping of integer types, strings of bytes and Python str
(unicode) into enumerated values of Python Enum types (including also IntEnum and IntFlag).

Example:

import enum

class EColor(enum.IntEnum):
RED = 1
GREEN = 2
BLUE = 3
BLACK = 10
WHITE = 11

@bpack.descriptor(baseunits="bits")
class BinaryRecord:

foreground: EColor = bpack.field(size=4, default=EColor.BLACK)
background: EColor = bpack.field(size=4, default=EColor.WHITE)

record = BinaryRecord()
print(record)

BinaryRecord(foreground=<EColor.BLACK: 10>, background=<EColor.WHITE: 11>)

The EColor enum values are lower that 16 so they can be represented with only 4 bits.

18 Chapter 3. User Guide

Binary data structures (un-)Packing library, Release 1.2.0.dev1

In particular the binary representation of BLACK and WHITE is:

>>> format(EColor.BLACK, "04b")
'1010'
>>> format(EColor.WHITE, "04b")
'1011'

and the binary string representing the above defined binary record is:

data = bytes([0b10101011])
print(data)

b'\xab'

The data string can be decoded using the bpack.bs backend that is suitable to handle binary data
structures with bits as baseunits:

import bpack.bs

decoder = bpack.bs.Decoder(BinaryRecord)
record = decoder.decode(data)
print(record)

BinaryRecord(foreground=<EColor.BLACK: 10>, background=<EColor.WHITE: 11>)

The result is directly mapped into Python enum values: EColor:BLACK and EColor:WHITE.

Note: The Enum sub-classes are accepted as field type only if all the enumeration values have the
same type (int, bytes or str).

Example:

import enum
import bpack

class EType(enum.Enum):
A = "A"
B = 2

@bpack.descriptor(baseunits=bpack.EBaseUnits.BITS)
class Record:

field: EType = bpack.field(size=8, default=EType.A) # ERROR!

3.4. Enumeration fields 19

Binary data structures (un-)Packing library, Release 1.2.0.dev1

The above code will result in the following error:

1 @bpack.descriptor(baseunits=bpack.EBaseUnits.BITS)
2 class Record:
3 field: EType = bpack.field(size=8, default=EType.A)

[...]

TypeError: only Enum with homogeneous values are supported

3.5 Sequence fields

bpack provides a basic support to homogeneous sequence fields i.e. fields containing a sequence
of values having the same data type.

The sequence is specified using the standard Python type annotation classes typing.Sequence or
typing.List.

The data type of a sequence item can be any of the basic data types described in Type.

from typing import Sequence, List

@bpack.descriptor
class BinaryRecord:

sequence: Sequence[int] = bpack.field(size=1, repeat=2)
list: List[float] = bpack.field(size=4, repeat=3)

Please note that the size parameter of the bpack.descriptors.field() factory function de-
scribes the size of the sequence item, while the repeat parameter described the number of elements
in the sequence.

The bpack.bs and bpack.st backend map Sequence[T] onto Python tuple instances and
List[T] onto list instances. The bpack.np instead maps all kind of sequences onto numpy.
ndarray instances.

20 Chapter 3. User Guide

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Binary data structures (un-)Packing library, Release 1.2.0.dev1

3.6 Record nesting

Descriptors of binary structures (record types) can have fields that are binary structure descriptors
in their turn (sub-records).

Example:

@bpack.descriptor
class SubRecord:

field_21: int = bpack.field(size=2, default=1)
field_22: int = bpack.field(size=2, default=2)

@bpack.descriptor
class Record:

field_1: int = bpack.field(size=4, default=0)
field_2: SubRecord = bpack.field(default_factory=SubRecord)

print(Record())

Record(field_1=0, field_2=SubRecord(field_21=1, field_22=2))

Decoding of the Record structure will automatically decode also data belonging to the sub-record
and assign to field_2 a SubRecord instance.

3.7 Special type annotations

Using the bpack.descriptors.field() factory function to define fields can be sometime very
verbose and boring.

The bpack package provides a typing annotation helper, bpack.typing.T, that allows to specify
basic types annotated with additional information like the size or the signed attribute for integers.
This helps to reduce the amount of typesetting required to specify a binary structure.

The bpack.typing.T type annotation class takes in input a string argument and converts it into
an annotated basic type.

>>> T["u4"]
typing.Annotated[int, TypeParams(byteorder=None, type='int',

size=4, signed=False)]

The resulting type annotation is a typing.Annotated basic type with attached a bpack.typing.
TypeParams instance.

This allows bpack to retrieve the information necessary to specify a field.

3.6. Record nesting 21

Binary data structures (un-)Packing library, Release 1.2.0.dev1

For example the following descriptor:

@bpack.descriptor
class BinaryRecord:

field_1: int = bpack.field(size=4, signed=True, default=0)
field_2: int = bpack.field(size=4, signed=False, default=1)

Can be specified in a more synthetic form as follows:

@bpack.descriptor
class BinaryRecord:

field_1: T["i4"] = 0
field_2: T["u4"] = 1

String descriptors, or typestr, are compatible with numpy (a sub-set of the one used in the numpy
array interface).

The typestr string format consists of 3 parts:

• an (optional) character describing the bit/byte order of the data

– <: little-endian,

– >: big-endian,

– |: not-relevant

• a character code giving the basic type of the array, and

• an integer providing the number of bits/bytes used by the type

The basic type character codes are:

• i: sighed integer

• u: unsigned integer

• f: float

• c: complex (currently not supported)

• S: bytes (string)

Note: Although the typestr format allows to specify the bit/byte order of the datatype it is usually
not necessary to do it because descriptor object already have this information.

See also:

bpack.typing.str_to_type_params(), bpack.typing.TypeParams, https://numpy.
org/doc/stable/reference/arrays.dtypes.html and https://numpy.org/doc/stable/reference/arrays.
interface.html

22 Chapter 3. User Guide

https://numpy.org/doc/stable/reference/arrays.interface.html
https://numpy.org/doc/stable/reference/arrays.dtypes.html
https://numpy.org/doc/stable/reference/arrays.dtypes.html
https://numpy.org/doc/stable/reference/arrays.interface.html
https://numpy.org/doc/stable/reference/arrays.interface.html

Binary data structures (un-)Packing library, Release 1.2.0.dev1

3.8 Data codecs

3.8.1 Backends

Backends provide encoding/decoding capabilities for binary data descriptors exploiting external
packages to do the low level job.

Currently bpack provides the following backends:

• bpack.st backend, based on the struct package, and

• bpack.bs backend, based on the bitstruct package to decode binary data described at bit
level, i.e. with fields that can have size expressed in terms of number of bits (also smaller
that 8).

• bpack.np backend, based on numpy (limited encoding capabilities)

Additionally a bpack.ba backend, feature incomplete, is also provided mainly for benchmarking
purposes. The bpack.ba backend is based on the bitarray package.

3.8.2 Codec objects

Each backend provides a Codec class that can be used to instantiate a codec objects.

Please refer to the Codecs section for a description of basic concepts of how decoders work.

Decoders are instantiated passing to the Codec class a binary data record descriptor. Each codec
has

• a descriptor property, by which it is possible to access the descriptor associated to the
Codec instance

• a baseunits property, that indicates the kind of descriptors supported by the Decoder class

• a decode(data: bytes) method, that takes in input a string of bytes and returns an
instance of the record type specified at the instantiation of the codec object

• a encode(record) method, that takes in input an instance of the record type specified at the
instantiation of the codec object (a Python object) and returns a string of bytes

Details on the Codec API can be found in:

• bpack.bs.Codec,

• bpack.np.Codec,

• bpack.st.Codec

3.8. Data codecs 23

https://docs.python.org/3/library/struct.html#module-struct
https://github.com/eerimoq/bitstruct
https://numpy.org
https://github.com/ilanschnell/bitarray
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Binary data structures (un-)Packing library, Release 1.2.0.dev1

Note: the bpack.ba backend does not provides encoding capabilities so no bpack.ba.Codec
class exists. A bpack.ba.Decoder class exists instead providing only decoding capabilities.

3.8.3 Codec decorator

Each backend provides also a @codec decorator the can be used to add to a descriptor direct decod-
ing capabilities. In particular the frombytes(data: bytes) class method and the tobytes()
method are added to the descriptor to be able to write code as the following:

import bpack
import bpack.st

@bpack.st.codec
@bpack.descriptor
class BinaryRecord:

field_1: float = bpack.field(size=8)
field_2: int = bpack.field(size=4, signed=True)

binary_data = b"\x18-DT\xfb!\t@\x15\xcd[\x07"
record = BinaryRecord.frombytes(binary_data)

print(record)

BinaryRecord(field_1=3.141592653589793, field_2=123456789)

encoded_data = record.tobytes()
assert binary_data == encoded_data

print(encoded_data)

b'\x18-DT\xfb!\t@\x15\xcd[\x07'

24 Chapter 3. User Guide

CHAPTER

FOUR

BPACK PACKAGE

Binary data structures (un-)Packing library.

bpack provides tools to describe, in a declarative way, and encode/decode binary data.

4.1 bpack.ba module

Bitarray based codec for binary data structures.

class bpack.ba.Decoder(descriptor, converters=<function converter_factory>)
Bases: Decoder

Bitarray based data decoder.

Only supports “big endian” byte-order and MSB bit-order.

decode(data: bytes)
Decode binary data and return a record object.

baseunits: EBaseUnits = 'bits'

bpack.ba.decoder(cls)
Class decorator to add (de)coding methods to a descriptor class.

The decorator automatically generates a Codec object form the input descriptor class and
attach to it methods for conversion form/to bytes.

25

https://docs.python.org/3/library/stdtypes.html#bytes

Binary data structures (un-)Packing library, Release 1.2.0.dev1

4.2 bpack.bs module

Bitstruct based codec for binary data structures.

class bpack.bs.Codec(descriptor, codec=None, decode_converters=None,
encode_converters=None)

Bases: BaseStructCodec

Bitstruct based codec.

Default bit-order: MSB.

baseunits: EBaseUnits = 'bits'

bpack.bs.Decoder

alias of Codec

bpack.bs.Encoder

alias of Codec

bpack.bs.codec(cls)
Class decorator to add (de)coding methods to a descriptor class.

The decorator automatically generates a Codec object form the input descriptor class and
attach to it methods for conversion form/to bytes.

bpack.bs.decoder(cls)
Class decorator to add (de)coding methods to a descriptor class.

The decorator automatically generates a Codec object form the input descriptor class and
attach to it methods for conversion form/to bytes.

bpack.bs.encoder(cls)
Class decorator to add (de)coding methods to a descriptor class.

The decorator automatically generates a Codec object form the input descriptor class and
attach to it methods for conversion form/to bytes.

bpack.bs.packbits(values, bits_per_sample: int, signed: bool = False, byteorder: str = '')→
bytes

Pack integer values using the specified number of bits for each sample.

Converts a sequence of values into a string of bytes in which each sample is stored according
to the specified number of bits.

Example:

4 samples 3 bytes

(continues on next page)

26 Chapter 4. bpack package

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

Binary data structures (un-)Packing library, Release 1.2.0.dev1

(continued from previous page)
[samp_1, samp_2, samp_3, samp_4] --> |------|------|------|------|

4 samples (6 bits per sample)

Please note that no check that the input values actually fits in the specified number of bits is
performed is performed.

The function return a sting of bytes including same number of samples of the input plus
possibly some padding bit (at the end) to fill an integer number of bytes.

If signed is set to True integers are stored as signed integers.

bpack.bs.unpackbits(data: bytes, bits_per_sample: int, signed: bool = False, byteorder: str
= '')

Unpack packed (integer) values form a string of bytes.

Takes in input a string of bytes in which (integer) samples have been stored using
bits_per_sample bit for each sample, and returns the sequence of corresponding Python
integers.

Example:

3 bytes 4 samples

|------|------|------|------| --> [samp_1, samp_2, samp_3, samp_4]

4 samples (6 bits per sample)

If signed is set to True integers are assumed to be stored as signed integers.

4.3 bpack.codecs module

Base classes and utility functions for codecs.

class bpack.codecs.Codec(descriptor)
Bases: Decoder, Encoder, ABC

Base class for codecs.

class bpack.codecs.Decoder(descriptor)
Bases: BaseCodec, ABC

Base class for decoders.

abstract decode(data: bytes)
Decode binary data and return Python object.

4.3. bpack.codecs module 27

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#bytes

Binary data structures (un-)Packing library, Release 1.2.0.dev1

class bpack.codecs.Encoder(descriptor)
Bases: BaseCodec, ABC

Base class for encoders.

abstract encode(record)→ bytes
Encode python objects into binary data.

bpack.codecs.has_codec(descriptor, codec_type: Type[Decoder | Encoder | Codec] | None =
None)→ bool

Return True if the input descriptor has a codec attached.

A descriptor decorated with a codec decorator has an attached codec instance and “from-
bytes”/”tobytes” methods (depending on the kind of codec).

The codec_type parameter can be used to query for specific codec features:

• codec_type = None: return True for any kind of codec

• codec_type = Decoder: return True if the attached coded has decoding capabilities

• codec_type = Encoder: return True if the attached coded has encoding capabilities

• codec_type = Codec: return True if the attached coded has both encoding and decoding
capabilities

4.4 bpack.descriptors module

Descriptors for binary records.

class bpack.descriptors.BinFieldDescriptor(type: Type | None = None, size: int |
None = None, offset: int | None = None,
signed: bool | None = None, repeat: int |
None = None)

Bases: object

Descriptor for bpack fields.

See also:

bpack.descriptors.field() for a description of the attributes.

is_enum_type()→ bool
Return True if the field is an enum.

is_int_type()→ bool
Return True if the field is an integer or a sub-type of integer.

28 Chapter 4. bpack package

https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Binary data structures (un-)Packing library, Release 1.2.0.dev1

is_sequence_type()→ bool
Return True if the field is a sequence.

update_from_type(type_: Type)
Update the field descriptor according to the specified type.

validate()

Perform validity check on the BinFieldDescriptor instance.

offset: int | None = None

repeat: int | None = None

number of items

signed: bool | None = None

size: int | None = None

item size

property total_size

Total size in bytes of the field (considering all item).

type: Type | None = None

class bpack.descriptors.Field(default, default_factory, init, repr, hash, compare,
metadata, kw_only)

Bases: object

compare

default

default_factory

hash

init

kw_only

metadata

name

repr

type

4.4. bpack.descriptors module 29

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object

Binary data structures (un-)Packing library, Release 1.2.0.dev1

bpack.descriptors.asdict(obj, *, dict_factory=<class 'dict'>)→ dict
Return the fields of a record as a new dictionary.

The returned dictionary maps field names to field values.

If given, ‘dict_factory’ will be used instead of built-in dict. The function applies recursively
to field values that are dataclass instances. This will also look into built-in containers: tuples,
lists, and dicts.

bpack.descriptors.astuple(obj, *, tuple_factory=<class 'tuple'>)→ Sequence
Return the fields of a dataclass instance as new tuple of field values.

If given, ‘tuple_factory’ will be used instead of built-in tuple. The function applies recur-
sively to field values that are dataclass instances. This will also look into built-in containers:
tuples, lists, and dicts.

bpack.descriptors.baseunits(obj)→ EBaseUnits
Return the base units of a binary record descriptor.

bpack.descriptors.bitorder(obj)→ EBitOrder | None
Return the bit order of a binary record descriptor.

bpack.descriptors.byteorder(obj)→ EByteOrder
Return the byte order of a binary record descriptor (endianness).

bpack.descriptors.calcsize(obj, units: EBaseUnits | None = None)→ int
Return the size of the obj record.

If the units parameter is not specified (default) then the returned size is expressed in the same
base units of the descriptor.

bpack.descriptors.descriptor(cls, *, size: int | None = None, byteorder: str | EByteOrder
= EByteOrder.DEFAULT , bitorder: str | EBitOrder | None
= None, baseunits: EBaseUnits = EBaseUnits.BYTES,
**kwargs)

Class decorator to define descriptors for binary records.

It converts a dataclass into a descriptor object for binary records.

• ensures that all fields are bpack.descriptor.Field descriptors

• offsets are automatically computed if necessary

• consistency checks on offsets and sizes are performed

Parameters

• cls – class to be decorated

• size – the size (expressed in base units) of the binary record

• byteorder – the byte-order of the binary record

30 Chapter 4. bpack package

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Binary data structures (un-)Packing library, Release 1.2.0.dev1

• bitorder – the bit-order of the binary record (must be None if the base
units are bytes). If set to none in bit-based records it is assumed bpack.
enums.EBitOrder.DEFAULT which corresponds to bpack.enums.
EBitOrder.MSB in all decoders currently implemented.

• baseunits – the base units (bpack.enums.EBaseUnits.BITS or
bpack.enums.EBaseUnits.BYTES) used to specify the binary record
descriptor

It is also possible to specify as additional keyword arguments all the parameters accepted by
dataclasses.dataclass().

bpack.descriptors.field(*, size: int | None = None, offset: int | None = None, signed: bool
| None = None, repeat: int | None = None, metadata=None,
**kwargs)→ Field

Initialize a field descriptor.

Returned object is a Field instance with metadata properly initialized to describe the field
of a binary record.

Parameters

• size – int size of the field in bpack.enums.EBaseUnits

• offset – int offset of the field w.r.t. the beginning of the record (ex-
pressed in bpack.enums.EBaseUnits)

• signed – bool True if an int field is signed, False otherwise. This param-
eter must not be specified for non int fields.

• repeat – int length of the sequence for sequence fields, i.e. fields consist-
ing in multiple items having the same data type. This parameter must not
be specified if the data type is not a sequence type (e.g. typing.List).

• metadata – additional metadata to be attached the the field descriptor.

• kwargs – additional keyword arguments for the dataclasses.field()
function.

bpack.descriptors.field_descriptors(descriptor, pad: bool = False)→
Iterator[BinFieldDescriptor]

Iterate the input record descriptor and return binary field descriptors.

Returned items are instances of the BinFieldDescriptor class describing characteristics
of each field of the input binary record descriptor.

If the pad parameter is set to True then also generate dummy field descriptors for padding
elements necessary to take into account offsets between fields.

bpack.descriptors.fields(obj)→ Sequence[Field]
Return a tuple describing the fields of this descriptor.

4.4. bpack.descriptors module 31

https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/dataclasses.html#dataclasses.field
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Sequence

Binary data structures (un-)Packing library, Release 1.2.0.dev1

bpack.descriptors.flat_fields_iterator(descriptor, offset: int = 0)→ Iterator[Field]
Recursively iterate on fields of a record descriptor.

The behavior of this function is similar to the one of bpack.descriptors.fields() if the
input descriptor do not contain fields that are descriptors (nested). The main difference is that
this one is an iterator while bpack.descriptors.fields() returns a tuple.

If the input descriptor is nested (i.e. has fields that are descriptors), then a the it is visited
recursively to return all the fields belonging to the main descriptor and to the nested ones.

The nested descriptors are replaced by their fields and the returned sequence of fields is flat.

Note: please note that in case of nested descriptors, the returned fields are copy of the
original ones, with the offset attribute adjusted to the relative to the beginning of the root
descriptor.

bpack.descriptors.get_field_descriptor(field: Field, validate: bool = True)→
BinFieldDescriptor

Return the field descriptor attached to a Field .

bpack.descriptors.is_descriptor(obj)→ bool
Return true if obj is a descriptor or a descriptor instance.

bpack.descriptors.is_field(obj)→ bool
Return true if an obj can be considered is a field descriptor.

bpack.descriptors.set_field_descriptor(field: Field, descriptor: BinFieldDescriptor,
validate: bool = True)→ Field

Set the field metadata according to the specified descriptor.

4.5 bpack.enums module

Enumeration types for the bpack package.

class bpack.enums.EBaseUnits(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

Bases: Enum

Base units used to specify size and offset parameters in descriptors.

BITS = 'bits'

BYTES = 'bytes'

32 Chapter 4. bpack package

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/enum.html#enum.Enum

Binary data structures (un-)Packing library, Release 1.2.0.dev1

class bpack.enums.EBitOrder(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

Bases: Enum

Enumeration for bit order.

DEFAULT = ''

LSB = '<'

MSB = '>'

class bpack.enums.EByteOrder(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

Bases: Enum

Enumeration for byte order (endianness).

Note: the EByteOrder.DEFAULT is equivalent to EByteOrder.NATIVE for binary struc-
tures having EBaseUnits.BYTE base units, and EByteOrder.BE for binary structures hav-
ing EBaseUnits.BIT base units.

classmethod get_native()

Return the native byte order.

BE = '>'

DEFAULT = ''

LE = '<'

NATIVE = '='

4.6 bpack.np module

Numpy based codec for binary data structures.

class bpack.np.Codec(descriptor)
Bases: Codec

Numpy based codec.

(Unicode) strings are treated as “utf-8” encoded byte strings. UCS4 encoded strings are not
supported.

4.6. bpack.np module 33

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/enum.html#enum.Enum

Binary data structures (un-)Packing library, Release 1.2.0.dev1

decode(data: bytes, count: int = 1)
Decode binary data and return a record object.

encode(record)
Encode record (Python object) into binary data.

baseunits: EBaseUnits = 'bytes'

property dtype

Return the numpy dtype corresponding to the codec.descriptor.

bpack.np.Decoder

alias of Codec

class bpack.np.ESignMode(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

Bases: IntEnum

Enumeration for sign encoding convention.

SIGNED = 1

SIGN_AND_MOD = 2

UNSIGNED = 0

bpack.np.Encoder

alias of Codec

bpack.np.codec(cls)
Class decorator to add (de)coding methods to a descriptor class.

The decorator automatically generates a Codec object form the input descriptor class and
attach to it methods for conversion form/to bytes.

bpack.np.decoder(cls)
Class decorator to add (de)coding methods to a descriptor class.

The decorator automatically generates a Codec object form the input descriptor class and
attach to it methods for conversion form/to bytes.

bpack.np.descriptor_to_dtype(descriptor)→ numpy.dtype
Convert the descriptor of a binary record into a numpy.dtype.

Please note that (unicode) strings are treated as “utf-8” encoded byte strings. UCS4 encoded
strings are not supported.

Sequences (typing.Sequence and typing.List) are always converted into numpy.
ndarray.

34 Chapter 4. bpack package

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/enum.html#enum.IntEnum
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.List
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Binary data structures (un-)Packing library, Release 1.2.0.dev1

See also:

bpack.descriptors.descriptor().

bpack.np.encoder(cls)
Class decorator to add (de)coding methods to a descriptor class.

The decorator automatically generates a Codec object form the input descriptor class and
attach to it methods for conversion form/to bytes.

bpack.np.unpackbits(data: bytes, bits_per_sample: int, samples_per_block: int | None =
None, bit_offset: int = 0, blockstride: int | None = None, sign_mode:
ESignMode = ESignMode.UNSIGNED, byteorder: str = '>', use_lut:
bool = True)→ numpy.ndarray

Unpack packed (integer) values form a string of bytes.

Takes in input a string of bytes in which (integer) samples have been stored using
bits_per_sample bit for each sample, and returns the sequence of corresponding Python
integers.

Example:

3 bytes 4 samples

|------|------|------|------| --> [samp_1, samp_2, samp_3, samp_4]

4 samples (6 bits per sample)

Parameters

• data – bytes string of bytes containing the packed data

• bits_per_sample – int the number of bits used to encode each sample

• samples_per_block – int, optional the number of samples in each data
block contained in the input string of bytes. This parameter is mostly
relevant if the data block contains other information (or padding bits) in
addition to the data samples. The number of blocks is deduced from the
length of the input string of bytes, the number of samples per block and
the number of bits per sample. If samples_per_block is not provided it is
assumed a single block, and the number of samples is derived from the
length of the input string of bytes and the number of bits per sample.

• bit_offset – int, optional the number of bits after which the sequence
of samples (data blocks) starts (default: 0). It can be used e.g. to take
into account of a possible binary header at the beginning of the sequence
of samples.

4.6. bpack.np module 35

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Binary data structures (un-)Packing library, Release 1.2.0.dev1

• blockstride – int, optional the number of bits between the start of a data
block and the start of the following one. This parameter is mostly relevant
if the data block contains other information (or padding bits) in addition
to the data samples. If not provided the blockstride is assumed to be equal
to the size of the data block i.e. bits_per_sample * samples_per_block.

• sign_mode – ESignMode, optional specifies how the sign of the integer
samples shall is encoded. Dy default unsigned samples are assumed. ..
seealso:: ESignMode.

• byteorder – str, optional Byte order of the encoded integers. Only rel-
evant for multi byte samples. Default: “>” (big endian).

• use_lut – bool, optional specifies whenever the decoding of signed sam-
ples shall exploit look-up tables (typically faster). Default: True.

4.7 bpack.st module

Struct based codec for binary data structures.

class bpack.st.Codec(descriptor, codec=None, decode_converters=None,
encode_converters=None)

Bases: BaseStructCodec

Struct based codec.

Default byte-order: MSB.

baseunits: EBaseUnits = 'bytes'

bpack.st.Decoder

alias of Codec

bpack.st.Encoder

alias of Codec

bpack.st.codec(cls)
Class decorator to add (de)coding methods to a descriptor class.

The decorator automatically generates a Codec object form the input descriptor class and
attach to it methods for conversion form/to bytes.

bpack.st.decoder(cls)
Class decorator to add (de)coding methods to a descriptor class.

The decorator automatically generates a Codec object form the input descriptor class and
attach to it methods for conversion form/to bytes.

36 Chapter 4. bpack package

Binary data structures (un-)Packing library, Release 1.2.0.dev1

bpack.st.encoder(cls)
Class decorator to add (de)coding methods to a descriptor class.

The decorator automatically generates a Codec object form the input descriptor class and
attach to it methods for conversion form/to bytes.

4.8 bpack.typing module

bpack support for type annotations.

class bpack.typing.T(*args, **kwargs)
Bases: object

Allow to specify numeric type annotations using string descriptors.

Example:

>>> T['u4']
typing.Annotated[int, TypeParams(byteorder=None,

type='int', size=4, signed=False)]

The resulting type annotation is a typing.Annotated numeric type with attached a bpack.
typing.TypeParams instance.

String descriptors, or typestr, are compatible with numpy (a sub-set of one used in the numpy
“array interface”).

The typestr string format consists of 3 parts:

• an (optional) character describing the byte order of the data

– <: little-endian,

– >: big-endian,

– |: not-relevant

• a character code giving the basic type of the array, and

• an integer providing the number of bytes the type uses

The basic type character codes are:

• i: sighed integer

• u: unsigned integer

• f: float

• c: complex

• S: bytes (string)

4.8. bpack.typing module 37

https://docs.python.org/3/library/functions.html#object

Binary data structures (un-)Packing library, Release 1.2.0.dev1

Note: typestr the format described above is a sub-set of the one used in the numpy “array
interface”.

See also:

str_to_type_params(), TypeParams, https://numpy.org/doc/stable/reference/arrays.
dtypes.html and https://numpy.org/doc/stable/reference/arrays.interface.html

class bpack.typing.TypeParams(byteorder: EByteOrder | None, type: Type[bool | int | float
| complex | bytes | str], size: int | None, signed: bool |
None)

Bases: NamedTuple

Named tuple describing type parameters.

byteorder: EByteOrder | None

Alias for field number 0

signed: bool | None

Alias for field number 3

size: int | None

Alias for field number 2

type: Type[bool | int | float | complex | bytes | str]

Alias for field number 1

bpack.typing.is_annotated(type_: Type)→ bool
Return True if the input is an annotated numeric type.

An annotated numeric type is assumed to be a typing.Annotated type annotation of a basic
numeric type with attached a bpack.typing.TypeParams instance.

See also:

bpack.typing.T.

4.9 bpack.utils module

Utility functions and classes.

bpack.utils.classdecorator(func)
Class decorator that can be used with or without parameters.

bpack.utils.create_fn(name, args, body, *, globals=None, locals=None,
return_type=<dataclasses._MISSING_TYPE object>)

38 Chapter 4. bpack package

https://numpy.org/doc/stable/reference/arrays.dtypes.html
https://numpy.org/doc/stable/reference/arrays.dtypes.html
https://numpy.org/doc/stable/reference/arrays.interface.html
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.NamedTuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#bool

Binary data structures (un-)Packing library, Release 1.2.0.dev1

Create a function object.

bpack.utils.effective_type(type_: Type | Type[Enum], keep_annotations: bool = False)
→ Type

Return the effective type.

In case of enums or sequences return the item type.

bpack.utils.enum_item_type(enum_cls: Type[Enum])→ Type
Return the type of the items of an enum.Enum.

This function also checks that all items of an enum have the same (or compatible) type.

bpack.utils.is_enum_type(type_: Type)→ bool
Return True if the input is and enum.Enum.

bpack.utils.is_int_type(type_: Type)→ bool
Return true if the effective type is an integer.

bpack.utils.is_sequence_type(type_: Type, error: bool = False)→ bool
Return True if the input is an homogeneous typed sequence.

Please note that fields annotated with typing.Tuple are not considered homogeneous se-
quences even if all items are specified to have the same type.

bpack.utils.sequence_type(type_: Type, error: bool = False)→ Type | None
Return the sequence type associated to a typed sequence.

The function return list or tuple if the input is considered a valid typed sequence, None
otherwise.

Please note that fields annotated with typing.Tuple are not considered homogeneous se-
quences even if all items are specified to have the same type.

bpack.utils.set_new_attribute(cls, name, value)
Programmatically add a new attribute/method to a class.

4.9. bpack.utils module 39

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple

Binary data structures (un-)Packing library, Release 1.2.0.dev1

40 Chapter 4. bpack package

CHAPTER

FIVE

DEVELOPERS GUIDE

5.1 Project links

PyPI page
https://pypi.org/project/bpack

repository
https://github.com/avalentino/bpack

issue tracker
https://github.com/avalentino/bpack/issues

CI
https://github.com/avalentino/bpack/actions

HTML documentation
https://bpack.readthedocs.io

5.2 Set-up the development environment

5.2.1 Pip based environment

$ python3 -m venv --prompt venv .venv
$ source .venv/bin/activate
(venv) $ python3 -m pip install -r requirements-dev-txt

41

https://pypi.org/project/bpack
https://github.com/avalentino/bpack
https://github.com/avalentino/bpack/issues
https://github.com/avalentino/bpack/actions
https://bpack.readthedocs.io

Binary data structures (un-)Packing library, Release 1.2.0.dev1

5.2.2 Conda based environment

$ conda create -c conda-forge -n bpack \
--file requirements-dev.txt python=3

5.2.3 Debian/Ubuntu

$ sudo apt install python3-bitstruct python3-bitarray \
python3-pytest python3-pytest-cov \
python3-sphinx python3-sphinx-rtd-theme

5.3 Testing the code

5.3.1 Basic testing

$ python3 -m pytest

It is also recommended to use the -W=error option.

5.3.2 Advanced testing

Tox (>4) is used to run a comprehensive test suite on multiple Python version. It also checks
formatting, coverage and ensures that the documentation builds properly.

$ tox run

5.4 Test coverage

$ python3 -m pytest --cov --cov-report=html --cov-report=term bpack

42 Chapter 5. Developers Guide

https://tox.readthedocs.io

Binary data structures (un-)Packing library, Release 1.2.0.dev1

5.5 Check code style and formatting

The code style and formatting shall be checked with flake8 as follows:

$ python3 -m flake8 --statistics --count bpack

Moreover, also the correct formatting of “docstrings” shall be checked, using pydocstyle this time:

$ python3 -m pydocstyle --count bpack

A more strict check of formatting can be done using black:

$ python3 -m black --check bpack

Finally the ordering of imports can be checked with isort as follows:

$ python3 -m isort --check bpack

Please note that all the relevant configuration for the above mentioned tools are in the pyproject.toml
file.

5.6 Build the documentation

$ make -C docs html

5.7 Test code snippets in the documentation

$ make -C docs doctest

5.8 Check documentation links

$ make -C docs linkcheck

5.5. Check code style and formatting 43

https://flake8.pycqa.org
http://www.pydocstyle.org
https://black.readthedocs.io
https://pycqa.github.io/isort

Binary data structures (un-)Packing library, Release 1.2.0.dev1

5.9 Check documentation spelling

$ make -C docs spelling

5.10 Update the API documentation

$ rm -rf docs/api
$ sphinx-apidoc --module-first --separate --no-toc \

--doc-project "bpack API" -o docs/api \
--templatedir docs/_templates/apidoc \
bpack bpack/tests

44 Chapter 5. Developers Guide

CHAPTER

SIX

COPYRIGHT AND LICENSE

Copyright 2020-2023 Antonio Valentino <antonio.valentino@tiscali.it>

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except
in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the specific language governing permissions
and limitations under the License.

6.1 Integral license text

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this␣

→˓document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common

(continues on next page)

45

mailto:antonio.valentino@tiscali.it
http://www.apache.org/licenses/LICENSE-2.0

Binary data structures (un-)Packing library, Release 1.2.0.dev1

(continued from previous page)
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making␣
→˓modifications,

including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other␣

→˓modifications
represent, as a whole, an original work of authorship. For the␣

→˓purposes
of this License, Derivative Works shall not include works that␣

→˓remain
separable from, or merely link (or bind by name) to the interfaces␣

→˓of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright␣

→˓owner
or by an individual or Legal Entity authorized to submit on behalf␣

→˓of
(continues on next page)

46 Chapter 6. Copyright and License

Binary data structures (un-)Packing library, Release 1.2.0.dev1

(continued from previous page)
the copyright owner. For the purposes of this definition, "submitted

→˓"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control␣

→˓systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution.

→˓"

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have␣

→˓made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You

(continues on next page)

6.1. Integral license text 47

Binary data structures (un-)Packing library, Release 1.2.0.dev1

(continued from previous page)
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify

(continues on next page)

48 Chapter 6. Copyright and License

Binary data structures (un-)Packing library, Release 1.2.0.dev1

(continued from previous page)
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing␣

→˓the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this␣

→˓License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

(continues on next page)

6.1. Integral license text 49

Binary data structures (un-)Packing library, Release 1.2.0.dev1

(continued from previous page)
END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or␣

→˓implied.
See the License for the specific language governing permissions and
limitations under the License.

50 Chapter 6. Copyright and License

CHAPTER

SEVEN

RELEASE NOTES

7.1 bpack v1.2.0 (UNRELEASED)

• Drop support to Python 3.7 and 3.8. Now bpack requires Python >= 3.9.

• New ‘full’ installation option added to pyproject.toml.

• No longer use deprecated syntax in sphinx configuration.

• Improved documentation and fixed typos.

• flake8 configuration moved to a dedicated file.

• Do not test the bpack.ba backend in PyPy3.

• New functions: - bpack.typing.type_params_to_str() - bpack.descriptors.
flat_fields_iterator()

• New bpack.tools.codegen module. It includes tool to generate flat binary record descrip-
tors starting from nested ones (requires Python >= 3.10).

7.2 bpack v1.1.0 (15/04/2023)

• Added support for signed integers to bpack.np.unpackbits(). Both standard signed inte-
gers and integers encoded with sign and module are now supported.

• Use uppercase enums in s1isp.py example.

• Improved docstrings in bpack.np.

• Fixed several typos.

51

https://github.com/pycqa/flake8
https://www.pypy.org

Binary data structures (un-)Packing library, Release 1.2.0.dev1

7.3 bpack v1.0.0 (05/02/2023)

• Fix compatibility with Python v3.11.

• Move setup configuration from setup.cfg to pyproject.toml.

7.4 bpack v0.8.2 (20/03/2022)

• Fallback to standard bitstruct if the bitstruct.c extension does not support the format string

7.5 bpack v0.8.1 (30/11/2021)

• Drop setup.py, no longer needed.

• Improve compatibility with typing-extensions v4.0 (closes gh-1).

• Use the compiled extension of bitstruct when available (and compatible with the specified
format string).

• Use cbitsturct when available (preferred over the compiled extension of bitstruct).

7.6 bpack v0.8.0 (03/06/2021)

• New “encoding” feature. Records can be now encoded into binary strings using the bpack.
st and bpack.bs backends. Previously only “decoding” was supported. The bpack.np
only implements a partial support to encoding currently.

7.7 bpack v0.7.1 (08/03/2021)

• Improved User Guide

• bpack.np.unpackbits() has been generalized and optimized.

• New example for packet decoding.

• Improved support for nested records.

52 Chapter 7. Release Notes

https://pypi.org/project/typing-extensions
https://github.com/avalentino/bpack/issues/1
https://github.com/eerimoq/bitstruct
https://github.com/qchateau/cbitstruct
https://github.com/eerimoq/bitstruct

Binary data structures (un-)Packing library, Release 1.2.0.dev1

7.8 bpack v0.7.0 (21/01/2021)

• New packbit/unpackbit functions (provisional API).

• Fixed a bug in decoding of nested records.

• Added example program for Sentinel-1 space packets decoding

7.9 bpack v0.6.0 (15/01/2021)

• New numpy based backend.

• New bpack.enums.EByteOrder.get_native() method.

• Now data types in descriptor definition can also be specified by means of special type anno-
tation type (bpack.typing.T) that accepts numpy-like format strings.

• Now it is no longer necessary to use the dataclasses.dataclass() decorator to define a
descriptor. That way to define descriptors is depercated. All parameters previously speci-
fied via dataclasses.dataclass() (like e.g. frozen) shall now be passed directly to the
bpack.descriptors.descriptor() decorator. With this change the use of dataclasses
becomes an implementation detail.

• The size parameter of the bpack.descriptors.field() factory function is now optional.

• General improvements and code refactoring.

• Improved CI testing.

• Added automatic spell checking of documentation in CI.

• Backward incompatible changes:

– bpack.enums.EBaseUnits, bpack.enums.EByteOrder and bpack.enums.
EBitOrder enums moved to the new bpack.enums module (the recommended way
to access enums is directly from bpack , e.g. bpack.EByteOrder)

– bpack.enums.EByteOrder.BIG and bpack.enums.EByteOrder.LITTLE enumer-
ates have been renamed into bpack.enums.EByteOrder.BE and bpack.enums.
EByteOrder.LE respectively

– classes decorated with the bpack.descriptors.descriptor() decorator no longer
have the __len__ method automatically added; the recommended way to compute the
size of a descriptors (class or instance) is to use the bpack.descriptros.calcsize()
function

– the default behavior of the bpack.decorators.calcsize() has been changed to re-
turn the size of the input descriptor in the same base units of the descriptor itself; pre-
viously the default behavior was to return the size in bytes

7.8. bpack v0.7.0 (21/01/2021) 53

https://numpy.org
https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass
https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass
https://docs.python.org/3/library/dataclasses.html#module-dataclasses

Binary data structures (un-)Packing library, Release 1.2.0.dev1

7.10 bpack v0.5.0 (31/12/2020)

• Initial release.

The package implements all core functionalities but

– the API is still not stable

– the documentation is incomplete

– some advanced feature is still missing

54 Chapter 7. Release Notes

INDEX

A
asdict() (in module bpack.descriptors), 29
astuple() (in module bpack.descriptors), 30

B
baseunits (bpack.ba.Decoder attribute), 25
baseunits (bpack.bs.Codec attribute), 26
baseunits (bpack.np.Codec attribute), 34
baseunits (bpack.st.Codec attribute), 36
baseunits() (in module bpack.descriptors),

30
BE (bpack.enums.EByteOrder attribute), 33
BinFieldDescriptor (class in

bpack.descriptors), 28
bitorder() (in module bpack.descriptors), 30
BITS (bpack.enums.EBaseUnits attribute), 32
bpack

module, 25
bpack.ba

module, 25
bpack.bs

module, 26
bpack.codecs

module, 27
bpack.descriptors

module, 28
bpack.enums

module, 32
bpack.np

module, 33
bpack.st

module, 36
bpack.typing

module, 37
bpack.utils

module, 38
byteorder (bpack.typing.TypeParams at-

tribute), 38
byteorder() (in module bpack.descriptors),

30
BYTES (bpack.enums.EBaseUnits attribute), 32

C
calcsize() (in module bpack.descriptors), 30
classdecorator() (in module bpack.utils), 38
Codec (class in bpack.bs), 26
Codec (class in bpack.codecs), 27
Codec (class in bpack.np), 33
Codec (class in bpack.st), 36
codec() (in module bpack.bs), 26
codec() (in module bpack.np), 34
codec() (in module bpack.st), 36
compare (bpack.descriptors.Field attribute), 29
create_fn() (in module bpack.utils), 38

D
decode() (bpack.ba.Decoder method), 25
decode() (bpack.codecs.Decoder method), 27
decode() (bpack.np.Codec method), 33
Decoder (class in bpack.ba), 25
Decoder (class in bpack.codecs), 27
Decoder (in module bpack.bs), 26
Decoder (in module bpack.np), 34
Decoder (in module bpack.st), 36
decoder() (in module bpack.ba), 25
decoder() (in module bpack.bs), 26
decoder() (in module bpack.np), 34
decoder() (in module bpack.st), 36
default (bpack.descriptors.Field attribute), 29

55

Binary data structures (un-)Packing library, Release 1.2.0.dev1

DEFAULT (bpack.enums.EBitOrder attribute),
33

DEFAULT (bpack.enums.EByteOrder attribute),
33

default_factory (bpack.descriptors.Field at-
tribute), 29

descriptor() (in module bpack.descriptors),
30

descriptor_to_dtype() (in module
bpack.np), 34

dtype (bpack.np.Codec property), 34

E
EBaseUnits (class in bpack.enums), 32
EBitOrder (class in bpack.enums), 32
EByteOrder (class in bpack.enums), 33
effective_type() (in module bpack.utils), 39
encode() (bpack.codecs.Encoder method), 28
encode() (bpack.np.Codec method), 34
Encoder (class in bpack.codecs), 27
Encoder (in module bpack.bs), 26
Encoder (in module bpack.np), 34
Encoder (in module bpack.st), 36
encoder() (in module bpack.bs), 26
encoder() (in module bpack.np), 35
encoder() (in module bpack.st), 36
enum_item_type() (in module bpack.utils), 39
ESignMode (class in bpack.np), 34

F
Field (class in bpack.descriptors), 29
field() (in module bpack.descriptors), 31
field_descriptors() (in module

bpack.descriptors), 31
fields() (in module bpack.descriptors), 31
flat_fields_iterator() (in module

bpack.descriptors), 31

G
get_field_descriptor() (in module

bpack.descriptors), 32
get_native() (bpack.enums.EByteOrder

class method), 33

H
has_codec() (in module bpack.codecs), 28
hash (bpack.descriptors.Field attribute), 29

I
init (bpack.descriptors.Field attribute), 29
is_annotated() (in module bpack.typing), 38
is_descriptor() (in module

bpack.descriptors), 32
is_enum_type()

(bpack.descriptors.BinFieldDescriptor
method), 28

is_enum_type() (in module bpack.utils), 39
is_field() (in module bpack.descriptors), 32
is_int_type()

(bpack.descriptors.BinFieldDescriptor
method), 28

is_int_type() (in module bpack.utils), 39
is_sequence_type()

(bpack.descriptors.BinFieldDescriptor
method), 28

is_sequence_type() (in module bpack.utils),
39

K
kw_only (bpack.descriptors.Field attribute), 29

L
LE (bpack.enums.EByteOrder attribute), 33
LSB (bpack.enums.EBitOrder attribute), 33

M
metadata (bpack.descriptors.Field attribute),

29
module

bpack, 25
bpack.ba, 25
bpack.bs, 26
bpack.codecs, 27
bpack.descriptors, 28
bpack.enums, 32
bpack.np, 33
bpack.st, 36
bpack.typing, 37
bpack.utils, 38

56 Index

Binary data structures (un-)Packing library, Release 1.2.0.dev1

MSB (bpack.enums.EBitOrder attribute), 33

N
name (bpack.descriptors.Field attribute), 29
NATIVE (bpack.enums.EByteOrder attribute),

33

O
offset (bpack.descriptors.BinFieldDescriptor

attribute), 29

P
packbits() (in module bpack.bs), 26

R
repeat (bpack.descriptors.BinFieldDescriptor

attribute), 29
repr (bpack.descriptors.Field attribute), 29

S
sequence_type() (in module bpack.utils), 39
set_field_descriptor() (in module

bpack.descriptors), 32
set_new_attribute() (in module

bpack.utils), 39
SIGN_AND_MOD (bpack.np.ESignMode at-

tribute), 34
signed (bpack.descriptors.BinFieldDescriptor

attribute), 29
SIGNED (bpack.np.ESignMode attribute), 34
signed (bpack.typing.TypeParams attribute),

38
size (bpack.descriptors.BinFieldDescriptor at-

tribute), 29
size (bpack.typing.TypeParams attribute), 38

T
T (class in bpack.typing), 37
total_size (bpack.descriptors.BinFieldDescriptor

property), 29
type (bpack.descriptors.BinFieldDescriptor at-

tribute), 29
type (bpack.descriptors.Field attribute), 29
type (bpack.typing.TypeParams attribute), 38
TypeParams (class in bpack.typing), 38

U
unpackbits() (in module bpack.bs), 27
unpackbits() (in module bpack.np), 35
UNSIGNED (bpack.np.ESignMode attribute), 34
update_from_type()

(bpack.descriptors.BinFieldDescriptor
method), 29

V
validate() (bpack.descriptors.BinFieldDescriptor

method), 29

Index 57

	Overview
	What is bpack?
	Features
	Limitations
	Possible additional features still not implemented

	Installation
	Pip
	Conda
	Testing

	User Guide
	Core concepts
	Descriptors
	Codecs

	Binary data structures declaration
	Bit vs byte structures
	Specifying bit/byte order
	Descriptor size

	Fields specification
	Type
	Size
	Offset
	Signed integer types
	Default values

	Enumeration fields
	Sequence fields
	Record nesting
	Special type annotations
	Data codecs
	Backends
	Codec objects
	Codec decorator

	bpack package
	bpack.ba module
	bpack.bs module
	bpack.codecs module
	bpack.descriptors module
	bpack.enums module
	bpack.np module
	bpack.st module
	bpack.typing module
	bpack.utils module

	Developers Guide
	Project links
	Set-up the development environment
	Pip based environment
	Conda based environment
	Debian/Ubuntu

	Testing the code
	Basic testing
	Advanced testing

	Test coverage
	Check code style and formatting
	Build the documentation
	Test code snippets in the documentation
	Check documentation links
	Check documentation spelling
	Update the API documentation

	Copyright and License
	Integral license text

	Release Notes
	bpack v1.2.0 (UNRELEASED)
	bpack v1.1.0 (15/04/2023)
	bpack v1.0.0 (05/02/2023)
	bpack v0.8.2 (20/03/2022)
	bpack v0.8.1 (30/11/2021)
	bpack v0.8.0 (03/06/2021)
	bpack v0.7.1 (08/03/2021)
	bpack v0.7.0 (21/01/2021)
	bpack v0.6.0 (15/01/2021)
	bpack v0.5.0 (31/12/2020)

	Index

